URBANRES 2018

jueves, 9 de abril de 2009

LA TEORIA DE CUERDAS : EL SUEÑO DE EINSTEIN : THE THEORY OF STRINGS: THE DREAM OF EINSTEIN : 理论字符串:红楼梦爱因斯坦



LA TEORIA DE CUERDAS


La teoría de cuerdas es un modelo fundamental de la física que básicamente afirma que todas las partículas son en realidad expresiones de un objeto básico unidimensional extendido llamado "cuerda" o "filamento".

De acuerdo con esta propuesta, un electrón no es un "punto" sin estructura interna y de dimensión cero, sino una cuerda minúscula que vibra en un espacio-tiempo de más de cuatro dimensiones. Un punto no puede hacer nada más que moverse en un espacio tridimensional. De acuerdo con esta teoría a nivel "microscópico" se percibiría que el electrón no es en realidad un punto, sino una cuerda en forma de lazo. Una cuerda puede hacer algo además de moverse, puede oscilar de diferentes maneras. Si oscila de cierta manera, entonces, macroscópicamente veríamos un electrón; pero si oscila de otra manera, entonces veríamos un fotón, o un quark, o cualquier otra partícula del modelo estándar. Esta teoría, ampliada con otras como la de las supercuerdas o la Teoría M pretenden alejarse de la concepción del punto-partícula.

Actualmente, la teoría de cuerdas es la más considerada para tener una teoría unificada o Teoría del todo, es decir, una teoría capaz de describir todos los fenómenos ocurridos en la naturaleza debido a las cuatro fuerzas fundamentales: la fuerza gravitacional, la fuerza electromagnética y las fuerzas de interacción nuclear fuerte y débil.




INTRODUCCION

Durante años, muchos físicos han soñado con tener una teoría del todo. Ésta se ha negado principalmente porque la gravedad se ha resistido a expresarse en forma cuántica, algo que se conoce como gravedad cuántica. Existen teorías que han unificado algunas fuerzas, como por ejemplo la teoría electrodébil o, más aún, el modelo estándar (una teoría cuántica de campos) el cual sí describe los fenómenos con resultados aceptables, pero con la excepción notable de la gravedad. Uno de los modos posibles para evitar problemas con la renormalización e inconsistencias internas dentro de la teoría es no trabajar con partículas puntuales sino considerar objetos extendidos unidimensionales, semejantes a "cuerdas". Según la vibración de tales cuerdas (que se hipotetizan como cerradas o como abiertas, según la versión concreta de teoría) se observarán tales o cuales partículas. En este panorama estamos hablando en un mundo donde las energías son muy altas, del orden de la energía de Planck. Cada tipo de partícula viene representado por tanto por un modo particular de vibración de la cuerda unidimensional.

La primera formulación de una teoría de cuerdas se debe a Jöel Scherk y John Schwuarz que en 1974 publicaron un artículo en el que demostraban que una teoría basada en objetos unidimensionales o "cuerdas" en lugar de partículas puntuales podía describir la fuerza gravitatoria. Aunque estas ideas no recibieron en ese momento mucha atención hasta la Primera revolución de supercuerdas de 1984. De acuerdo con la formulación de la teoría de cuerdas surgida de esta revolución, las teorías de cuerdas pueden considerarse de hecho un caso general de teoría de Kaluza-Klein cuantizada. Las ideas fundamentales son dos:

Los objetos básicos de la teoría no serían partículas puntuales sino objetos unidimensionales extendidos (en las cinco teorías de cuerdas convencionales estos objetos eran unidimensionales o "cuerdas", actualmente en la teoría-M se admiten también de dimensión superior o "p-branas"). Esto renormaliza algunos infinitos de los cálculos perturbativos.

El espacio-tiempo en el que se mueven las cuerdas y p-branas de la teoría no sería el espacio-tiempo ordinario de 4 dimensiones sino un espacio de tipo Kaluza-Klein, al que a las cuatro dimensiones convencionales se añaden 6 dimensiones compactificadas en forma de variedad de Calabi-Yau. Por tanto convencionalmente en la teoría de cuerdas existe 1 dimensión temporal, 3 dimensiones espaciales ordinarias y 6 dimensiones compactificadas e inobservables en la práctica.

La inobservabilidad de las dimensiones adicionales está ligada al hecho de que éstas están compactificadas, y sólo son relevantes a escalas tan pequeñas como la longitud de Planck. Igualmente con la precisión de medida convencional las cuerdas cerradas con una longitud similar a la longitud de Planck se asemejan a partículas puntuales.

DESARROLLOS POSTERIORES

Posteriormente a la introducción de las teorías de cuerdas, se consideró la necesidad y conveniencia de introducir el principio de que la teoría fuera supersimétrica, es decir, admitiera una simetría abstracta que relacionara fermiones y bosones. Actualmente la mayoría de teóricos de cuerdas trabajan en teorías supersimétricas de ahí que la teoría de cuerdas actualmente se llamen teoría de supercuerdas. Esta última teoría es básicamente una teoría de cuerdas supersimétrica, es decir, que es invariante bajo transformaciones de supersimetría.

Actualmente existen cinco teorías de [super]cuerdas relacionadas con los cinco modos que se conocen de implementar la supersimetría en el modelo de cuerdas. Aunque dicha multiplicidad de teorías desconcertó a los especialistas durante más de una década, el saber convencional actual sugiere que las cinco teorías son casos límites de una teoría única sobre un espacio de 11 dimensiones (las 3 del espacio, 1 temporal y 6 adicionales resabiadas o "compactadas" y 1 que las engloba formando "membranas" de las cuales se podría escapar parte de la gravedad de ellas en forma de "gravitones"). Esta teoría única, llamada teoría M, de la que sólo se conocerían algunos aspectos fue conjeturada en 1995.



VARIANTES DE LA TEORIA

La teoría de supercuerdas es algo actual, en sus principios (mediados de los años ochenta) aparecieron unas cinco teorías de cuerdas, las cuales después fueron identificadas como límites particulares de una sola teoría: la Teoría M. Las cinco versiones de la teoría actualmente existentes, entre las que pueden establecerse varias relaciones de dualidad son:

La teoría de tipo I, donde aparecen tanto "cuerdas" y D-branas abiertas como cerradas, que se mueven sobre un espacio-tiempo de 10 dimensiones. Las D-branas tienen 1, 5 y 9 dimensiones espaciales.

La teoría de tipo IIA, es también una teoría de 10 dimensiones pero que emplea sólo cuerdas y D-branas cerradas. Incorpora dos gravitines (partículas teóricas asociadas al gravitón mediante relaciones de supersimetría). Usa D-branas de dimensión 0, 2, 4, 6, y 8.

La teoría de tipo IIB.

La teoría de heteróclita-O, basada en el grupo de simetría O(32).

La teoría de heteróclita-E, basada en el grupo de Lie excepcional E8. Fue propuesta en 1987 por Gross, Harvey, Martinec y Rohm.

El término teoría de cuerda se refiere en realidad a las teorías de cuerdas bosónicas de 26 dimensiones y la teoría de supercuerdas de 10 dimensiones, esta última descubierta al añadir supersimetría a la teoría de cuerdas bosónica. Hoy en día la teoría de cuerdas se suele referir a la variante supersimétrica mientras que la antigua se llama por el nombre completo de "teoría de cuerdas bosónicas". En 1995, Edward Witten conjeturó que las cinco diferentes teorías de supercuerdas son casos límite de una desconocida teoría de 11 dimensiones llamada Teoría-M. La conferencia donde Witten mostró algunos de sus resultados inició la llamada Segunda revolución de supercuerdas.

En esta teoría M intervienen como objetos físicos fundamentales no sólo cuerdas unidimensionales, sino toda una variedad de objetos no perturbativos, extendidos en varias dimensiones, que se llama colectivamente p-branas (este nombre es un apócope de "membrana").

CONTROVERSIA SOBRE LA TEORIA

Aunque la teoría de cuerdas, según sus defensores, pudiera llegar a convertirse en una de las teorías físicas más predictivas, capaz de explicar algunas de las propiedades más fundamentales de la naturaleza en términos geométricos, los físicos que han trabajado en ese campo hasta la fecha no han podido hacer predicciones concretas con la precisión necesaria para confrontarlas con datos experimentales. Dichos problemas de predicción se deberían, según el autor, a que el modelo no es falsable, y por tanto, no es científico,1 o bien a que «La teoría de las supercuerdas es tan ambiciosa que sólo puede ser del todo correcta o del todo equivocada. El único problema es que sus matemáticas son tan nuevas y tan difíciles que durante varias décadas no sabremos cuáles son»





Fuente : Wikipedia



URBANRES

CLICK DOWN TO KNOW MORE OVER EINSTEIN



4 COMENTARIOS:

Anónimo dijo...

uau... muy bueno

Don Julio dijo...

Mucho antes de que estos científicos concibieran la Teoría M o de "filamentos" (que me parece extraordinariamente acertada) un brujo perteneciente a la Cultura Tolteca (la que "permeó" todas las grandes civilizaciones mesoamericanas) le dijo a su aprendiz que el Universo era un conglomerado de quintillones de quintillones de "filamentos luminosos". Fue Don Juan Matus y su aprendiz era Carlos Castaneda. Esto fue alrededor de la década de los 60´s.
Comento que me adhiero totalmente a esta teoría pues es perfecta y lo mejor de lo mejor: con un entrenamiento disciplinado -esbozado en la obra de Castaneda- dichos filamentos se pueden ver...
Saludos.

Anónimo dijo...

El documental sobre teoria de cuerdas es sumamente didactico, tendrían que actualizar de acuerdo a los ultimos estudios del colisionador de hadrones. Gracias desde argentina,

Anónimo dijo...

Aunque un comentario que leo en estas paginas sobre la obra de Carlos Castaneda y el brujo tolteca Juan Matus resultaron por coincidencia ser similar a la teoria de cuerdas (teoria a la cual adhiero), lo de Castaneda no se puede tomar en serio, como ya dije una mera coincidencia, ya sea ha comentado que fue todo un invento literario y que por cierto en su momento dio buenas divisas a su autor.

Publicar un comentario

GRACIAS POR SEGUIR ACOMPAÑANDONOS : ESPERAMOS TU OPINION

NO TE VAYAS TODAVIA, AUN HAY MAS

ARRIBA